Search published articles


Showing 2 results for Toxicity.

Behzad Ghasemi, Mohsen Najimi, Hamid Beyzaei, Abbas Jamshidian,
Volume 9, Issue 4 (10-2015)
Abstract

Abstract

      Background and Objectives: Antibiotic resistance in bacteria has actuated researchers toward evaluating many new antibacterial compounds of which are the thiazoles. In this research the inhibitory effects of novel thiazole derivatives were unraveled on Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa and Klebsiella pneumoniae and oxothiazole liver toxicity effects were assessed on mice.

       Methods: The antibacterial effect of thiazole derivatives was evaluated by measuring the halo zone with disk diffusion method and dilution procedure in microplate in order to discriminate the minimum inhibitory concentration (MIC) and the liver toxicity of oxothiazole, also, was discerned by injecting 160 mg/kg, 265 mg/ kg and 350 mg/kg doses to mice as well as scrutinizing the liver histopathology.

      Results: Derivatives utilized in experiment had no inhibitory effect on Pseudomonas aeruginosa and Klebsiella pneumoniae, though their inhibitory effect was observed on Staphylococcus aureus and Streptococcus agalactiae. For Staphylococcus aureus and Streptococcus agalactiae the diameters of growth inhibition zone were 8.9-22.3 mm and 16.1-25.6 mm, respectively and MIC of 50-200 and 25-100 µg/ml by order. Additionally, by increasing the injection dose of oxothiazole with 160 mg/ml, 265 mg/ml and 350 mg/ml doses, the hepatitis lesions and liver necrosis were observed in experimental mice.

       Discussion: The thiazole derivatives possessed more inhibitory trace on gram positive bacteria than gram negative ones. Furthermore, the likely presence of oxygen link to thiazole ring in tested compounds results in the enhancement of inhibitory potency of these substances. Besides, our results suggest that high doses of oxothiazole cause severe liver damage and rapid death less than 24 hours.

       Keywords: Thiazole derivatives, Antibacterial effects, Oxothiazole, Liver toxicity.


Shima Doostmohammadi , Babak Kheirkhah , Seyed Mohammad Reza Khoshroo ,
Volume 10, Issue 4 (7-2016)
Abstract

ABSTRACT

         Background and Objectives: Size of silver nanoparticles synthesized by ethanol and Bacillus lichenioformisis 20 nm and 15 nm, respectively. Nanoparticles can be used in treatment of several diseases. Chemical and biological methods have been used to synthesize silver nanoparticles. The aim of this study was to compare the size, shape and coating of silver nanoparticles synthesized by the chemical and biological methods.

        Methods: Ethanol was used in the chemical reduction method and B. licheniformis was used in the biological method. Physical evaluation (salt test), absorbance measurement at 450 nm and imaging by transmission electron microscopy were performed to compare nanoparticles in terms of size, shape and coating.

         Results: Observed maroon color, maximum absorption at 400-450 nm range and electron microscopy images confirmed the presence of nanoparticles. The shape of nanoparticles synthesized by the two methods was spherical. However, biosynthesized nanoparticles were smaller and had protein coating.

          Conclusion: Given the smaller size of biosynthesized nanoparticles and presence of coating confirmed by the electron microscopy images, biosynthesis is recommended because of enhanced nanoparticles properties and reduced toxicity.

            Keywords: Nanoparticles, Coating, Toxicity.



Page 1 from 1     

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.